graflo.hq¶
High-level orchestration modules for graflo.
This package provides high-level orchestration classes that coordinate multiple components for graph database operations.
Caster
¶
Main class for data casting and ingestion.
This class handles the process of casting data into graph structures and ingesting them into the database. It supports batch processing, parallel execution, and various data formats.
Attributes:
| Name | Type | Description |
|---|---|---|
schema |
Schema configuration for the graph |
|
ingestion_params |
IngestionParams instance controlling ingestion behavior |
Source code in graflo/hq/caster.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 | |
__init__(schema, ingestion_params=None, **kwargs)
¶
Initialize the caster with schema and configuration.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema
|
Schema
|
Schema configuration for the graph |
required |
ingestion_params
|
IngestionParams | None
|
IngestionParams instance with ingestion configuration. If None, creates IngestionParams from kwargs or uses defaults |
None
|
**kwargs
|
Additional configuration options (for backward compatibility): - clear_data: Whether to clear existing data before ingestion - n_cores: Number of CPU cores/threads to use for parallel processing - max_items: Maximum number of items to process - batch_size: Size of batches for processing - dry: Whether to perform a dry run |
{}
|
Source code in graflo/hq/caster.py
cast_normal_resource(data, resource_name=None)
async
¶
Cast data into a graph container using a resource.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Data to cast |
required | |
resource_name
|
str | None
|
Optional name of the resource to use |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
GraphContainer |
GraphContainer
|
Container with cast graph data |
Source code in graflo/hq/caster.py
discover_files(fpath, pattern, limit_files=None)
staticmethod
¶
Discover files matching a pattern in a directory.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fpath
|
Path | str
|
Path to search in (should be the directory containing files) |
required |
pattern
|
FilePattern
|
Pattern to match files against |
required |
limit_files
|
Optional limit on number of files to return |
None
|
Returns:
| Type | Description |
|---|---|
list[Path]
|
list[Path]: List of matching file paths |
Raises:
| Type | Description |
|---|---|
AssertionError
|
If pattern.sub_path is None |
Source code in graflo/hq/caster.py
ingest(target_db_config, patterns=None, ingestion_params=None)
¶
Ingest data into the graph database.
This is the main ingestion method that takes: - Schema: Graph structure (already set in Caster) - OutputConfig: Target graph database configuration - Patterns: Mapping of resources to physical data sources - IngestionParams: Parameters controlling the ingestion process
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_db_config
|
DBConfig
|
Target database connection configuration (for writing graph) |
required |
patterns
|
Patterns | None
|
Patterns instance mapping resources to data sources If None, defaults to empty Patterns() |
None
|
ingestion_params
|
IngestionParams | None
|
IngestionParams instance with ingestion configuration. If None, uses default IngestionParams() |
None
|
Source code in graflo/hq/caster.py
ingest_data_sources(data_source_registry, conn_conf, ingestion_params=None)
async
¶
Ingest data from data sources in a registry.
Note: Schema definition should be handled separately via GraphEngine.define_schema() before calling this method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_source_registry
|
DataSourceRegistry
|
Registry containing data sources mapped to resources |
required |
conn_conf
|
DBConfig
|
Database connection configuration |
required |
ingestion_params
|
IngestionParams | None
|
IngestionParams instance with ingestion configuration. If None, uses default IngestionParams() |
None
|
Source code in graflo/hq/caster.py
normalize_resource(data, columns=None)
staticmethod
¶
Normalize resource data into a list of dictionaries.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
DataFrame | list[list] | list[dict]
|
Data to normalize (DataFrame, list of lists, or list of dicts) |
required |
columns
|
list[str] | None
|
Optional column names for list data |
None
|
Returns:
| Type | Description |
|---|---|
list[dict]
|
list[dict]: Normalized data as list of dictionaries |
Raises:
| Type | Description |
|---|---|
ValueError
|
If columns is not provided for list data |
Source code in graflo/hq/caster.py
process_batch(batch, resource_name, conn_conf=None)
async
¶
Process a batch of data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch
|
Batch of data to process |
required | |
resource_name
|
str | None
|
Optional name of the resource to use |
required |
conn_conf
|
None | DBConfig
|
Optional database connection configuration |
None
|
Source code in graflo/hq/caster.py
process_data_source(data_source, resource_name=None, conn_conf=None)
async
¶
Process a data source.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_source
|
AbstractDataSource
|
Data source to process |
required |
resource_name
|
str | None
|
Optional name of the resource (overrides data_source.resource_name) |
None
|
conn_conf
|
None | DBConfig
|
Optional database connection configuration |
None
|
Source code in graflo/hq/caster.py
process_resource(resource_instance, resource_name, conn_conf=None, **kwargs)
async
¶
Process a resource instance from configuration or direct data.
This method accepts either: 1. A configuration dictionary with 'source_type' and data source parameters 2. A file path (Path or str) - creates FileDataSource 3. In-memory data (list[dict], list[list], or pd.DataFrame) - creates InMemoryDataSource
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
resource_instance
|
Path | str | list[dict] | list[list] | DataFrame | dict[str, Any]
|
Configuration dict, file path, or in-memory data. Configuration dict format: - {"source_type": "file", "path": "data.json"} - {"source_type": "api", "config": {"url": "https://..."}} - {"source_type": "sql", "config": {"connection_string": "...", "query": "..."}} - {"source_type": "in_memory", "data": [...]} |
required |
resource_name
|
str | None
|
Optional name of the resource |
required |
conn_conf
|
None | DBConfig
|
Optional database connection configuration |
None
|
**kwargs
|
Additional arguments passed to data source creation (e.g., columns for list[list], encoding for files) |
{}
|
Source code in graflo/hq/caster.py
process_with_queue(tasks, conn_conf=None)
async
¶
Process tasks from a queue.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tasks
|
Queue
|
Async queue of tasks to process |
required |
conn_conf
|
DBConfig | None
|
Optional database connection configuration |
None
|
Source code in graflo/hq/caster.py
push_db(gc, conn_conf, resource_name)
async
¶
Push graph container data to the database.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
gc
|
GraphContainer
|
Graph container with data to push |
required |
conn_conf
|
DBConfig
|
Database connection configuration |
required |
resource_name
|
str | None
|
Optional name of the resource |
required |
Source code in graflo/hq/caster.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | |
GraphEngine
¶
Orchestrator for graph database operations.
GraphEngine coordinates schema inference, pattern creation, schema definition, and data ingestion, providing a unified interface for working with graph databases.
The typical workflow is: 1. infer_schema() - Infer schema from source database (if possible) 2. create_patterns() - Create patterns mapping resources to data sources (if possible) 3. define_schema() - Define schema in target database (if possible and necessary) 4. ingest() - Ingest data into the target database
Attributes:
| Name | Type | Description |
|---|---|---|
target_db_flavor |
Target database flavor for schema sanitization |
|
resource_mapper |
ResourceMapper instance for pattern creation |
Source code in graflo/hq/graph_engine.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | |
__init__(target_db_flavor=DBType.ARANGO)
¶
Initialize the GraphEngine.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_db_flavor
|
DBType
|
Target database flavor for schema sanitization |
ARANGO
|
Source code in graflo/hq/graph_engine.py
create_patterns(postgres_config, schema_name=None, datetime_columns=None)
¶
Create Patterns from PostgreSQL tables.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
postgres_config
|
PostgresConfig
|
PostgresConfig instance |
required |
schema_name
|
str | None
|
Schema name to introspect |
None
|
datetime_columns
|
dict[str, str] | None
|
Optional mapping of resource/table name to datetime column name for date-range filtering (sets date_field per TablePattern). Use with IngestionParams.datetime_after / datetime_before. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
Patterns |
Patterns
|
Patterns object with TablePattern instances for all tables |
Source code in graflo/hq/graph_engine.py
define_and_ingest(schema, target_db_config, patterns=None, ingestion_params=None, recreate_schema=None, clear_data=None)
¶
Define schema and ingest data into the graph database in one operation.
This is a convenience method that chains define_schema() and ingest(). It's the recommended way to set up and populate a graph database.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema
|
Schema
|
Schema configuration for the graph |
required |
target_db_config
|
DBConfig
|
Target database connection configuration |
required |
patterns
|
Patterns | None
|
Patterns instance mapping resources to data sources. If None, defaults to empty Patterns() |
None
|
ingestion_params
|
IngestionParams | None
|
IngestionParams instance with ingestion configuration. If None, uses default IngestionParams() |
None
|
recreate_schema
|
bool | None
|
If True, drop existing schema and define new one. If None, defaults to False. When False and schema already exists, define_schema raises SchemaExistsError and the script halts. |
None
|
clear_data
|
bool | None
|
If True, remove existing data before ingestion (schema unchanged). If None, uses ingestion_params.clear_data. |
None
|
Source code in graflo/hq/graph_engine.py
define_schema(schema, target_db_config, recreate_schema=False)
¶
Define schema in the target database.
This method handles database/schema creation and initialization. Some databases don't require explicit schema definition (e.g., Neo4j), but this method ensures the database is properly initialized.
If the schema/graph already exists and recreate_schema is False (default), init_db raises SchemaExistsError and the script halts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema
|
Schema
|
Schema configuration for the graph |
required |
target_db_config
|
DBConfig
|
Target database connection configuration |
required |
recreate_schema
|
bool
|
If True, drop existing schema and define new one. If False and schema/graph already exists, raises SchemaExistsError. |
False
|
Source code in graflo/hq/graph_engine.py
infer_schema(postgres_config, schema_name=None, fuzzy_threshold=0.8, discard_disconnected_vertices=False)
¶
Infer a graflo Schema from PostgreSQL database.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
postgres_config
|
PostgresConfig
|
PostgresConfig instance |
required |
schema_name
|
str | None
|
Schema name to introspect (defaults to config schema_name or 'public') |
None
|
fuzzy_threshold
|
float
|
Similarity threshold for fuzzy matching (0.0 to 1.0, default 0.8) |
0.8
|
discard_disconnected_vertices
|
bool
|
If True, remove vertices that do not take part in any relation (and resources/actors that reference them). Default False. |
False
|
Returns:
| Name | Type | Description |
|---|---|---|
Schema |
Schema
|
Inferred schema with vertices, edges, and resources |
Source code in graflo/hq/graph_engine.py
ingest(schema, target_db_config, patterns=None, ingestion_params=None)
¶
Ingest data into the graph database.
If ingestion_params.clear_data is True, removes all existing data (without touching the schema) before ingestion.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema
|
Schema
|
Schema configuration for the graph |
required |
target_db_config
|
DBConfig
|
Target database connection configuration |
required |
patterns
|
Patterns | None
|
Patterns instance mapping resources to data sources. If None, defaults to empty Patterns() |
None
|
ingestion_params
|
IngestionParams | None
|
IngestionParams instance with ingestion configuration. If None, uses default IngestionParams() |
None
|
Source code in graflo/hq/graph_engine.py
introspect(postgres_config, schema_name=None)
¶
Introspect PostgreSQL schema and return a serializable result.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
postgres_config
|
PostgresConfig
|
PostgresConfig instance |
required |
schema_name
|
str | None
|
Schema name to introspect (defaults to config schema_name or 'public') |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
SchemaIntrospectionResult |
SchemaIntrospectionResult
|
Introspection result (vertex_tables, edge_tables, raw_tables, schema_name) suitable for serialization. |
Source code in graflo/hq/graph_engine.py
InferenceManager
¶
Inference manager for PostgreSQL sources.
Source code in graflo/hq/inferencer.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
__init__(conn, target_db_flavor=DBType.ARANGO, fuzzy_threshold=0.8)
¶
Initialize the PostgreSQL inference manager.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
conn
|
PostgresConnection
|
PostgresConnection instance |
required |
target_db_flavor
|
DBType
|
Target database flavor for schema sanitization |
ARANGO
|
fuzzy_threshold
|
float
|
Similarity threshold for fuzzy matching (0.0 to 1.0, default 0.8) |
0.8
|
Source code in graflo/hq/inferencer.py
create_resources(introspection_result, schema)
¶
Create Resources from PostgreSQL introspection result.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
introspection_result
|
SchemaIntrospectionResult from PostgreSQL |
required | |
schema
|
Schema
|
Existing Schema object |
required |
Returns:
| Type | Description |
|---|---|
list[Resource]
|
list[Resource]: List of Resources for PostgreSQL tables |
Source code in graflo/hq/inferencer.py
create_resources_for_schema(schema, schema_name=None)
¶
Create Resources from source for an existing schema.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema
|
Schema
|
Existing Schema object |
required |
schema_name
|
str | None
|
Schema name to introspect (source-specific) |
None
|
Returns:
| Type | Description |
|---|---|
list[Resource]
|
list[Resource]: List of Resources for the source |
Source code in graflo/hq/inferencer.py
infer_complete_schema(schema_name=None)
¶
Infer a complete Schema from source and sanitize for target.
This is a convenience method that: 1. Introspects the source schema 2. Infers the graflo Schema 3. Sanitizes for the target database flavor 4. Creates and adds resources 5. Re-initializes the schema
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema_name
|
str | None
|
Schema name to introspect (source-specific) |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
Schema |
Schema
|
Complete inferred schema with vertices, edges, and resources |
Source code in graflo/hq/inferencer.py
infer_schema(introspection_result, schema_name=None)
¶
Infer graflo Schema from PostgreSQL introspection result.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
introspection_result
|
SchemaIntrospectionResult from PostgreSQL |
required | |
schema_name
|
str | None
|
Schema name (optional, may be inferred from result) |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
Schema |
Schema
|
Inferred schema with vertices and edges |
Source code in graflo/hq/inferencer.py
introspect(schema_name=None)
¶
Introspect PostgreSQL schema.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema_name
|
str | None
|
Schema name to introspect |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
SchemaIntrospectionResult |
SchemaIntrospectionResult
|
PostgreSQL schema introspection result |
Source code in graflo/hq/inferencer.py
IngestionParams
¶
Bases: BaseModel
Parameters for controlling the ingestion process.
Attributes:
| Name | Type | Description |
|---|---|---|
clear_data |
bool
|
If True, remove all existing graph data before ingestion without changing the schema. |
n_cores |
int
|
Number of CPU cores/threads to use for parallel processing |
max_items |
int | None
|
Maximum number of items to process per resource (applies to all data sources) |
batch_size |
int
|
Size of batches for processing |
dry |
bool
|
Whether to perform a dry run (no database changes) |
init_only |
bool
|
Whether to only initialize the database without ingestion |
limit_files |
int | None
|
Optional limit on number of files to process |
max_concurrent_db_ops |
int | None
|
Maximum number of concurrent database operations (for vertices/edges). If None, uses n_cores. Set to 1 to prevent deadlocks in databases that don't handle concurrent transactions well (e.g., Neo4j). Database-independent setting. |
datetime_after |
str | None
|
Inclusive lower bound for datetime filtering (ISO format). Rows with date_column >= datetime_after are included. Used with SQL/table sources. |
datetime_before |
str | None
|
Exclusive upper bound for datetime filtering (ISO format). Rows with date_column < datetime_before are included. Range is [datetime_after, datetime_before). |
datetime_column |
str | None
|
Default column name for datetime filtering when the pattern does not specify date_field. Per-table override: set date_field on TablePattern (or FilePattern). |
Source code in graflo/hq/caster.py
ResourceMapper
¶
Maps different data sources to Patterns for graph ingestion.
This class provides methods to create Patterns from various data sources, enabling a unified interface for pattern creation regardless of the source type.
Source code in graflo/hq/resource_mapper.py
create_patterns_from_postgres(conn, schema_name=None, datetime_columns=None)
¶
Create Patterns from PostgreSQL tables.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
conn
|
PostgresConnection
|
PostgresConnection instance |
required |
schema_name
|
str | None
|
Schema name to introspect |
None
|
datetime_columns
|
dict[str, str] | None
|
Optional mapping of resource/table name to datetime column name for date-range filtering (sets date_field on each TablePattern). Used with IngestionParams.datetime_after / datetime_before. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
Patterns |
Patterns
|
Patterns object with TablePattern instances for all tables |
Source code in graflo/hq/resource_mapper.py
SchemaSanitizer
¶
Sanitizes schema attributes to avoid reserved words and normalize indexes.
This class handles: - Sanitizing vertex names and field names to avoid reserved words - Normalizing vertex indexes for TigerGraph (ensuring consistent indexes for edges with the same relation) - Applying field index mappings to resources
Source code in graflo/hq/sanitizer.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | |
__init__(db_flavor)
¶
Initialize the schema sanitizer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
db_flavor
|
DBType
|
Target database flavor to load reserved words for |
required |
Source code in graflo/hq/sanitizer.py
sanitize(schema)
¶
Sanitize attribute names and vertex names in the schema to avoid reserved words.
This method modifies: - Field names in vertices and edges - Vertex names themselves - Edge source/target/by references to vertices - Resource apply lists that reference vertices
The sanitization is deterministic: the same input always produces the same output.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
schema
|
Schema
|
The schema to sanitize |
required |
Returns:
| Type | Description |
|---|---|
Schema
|
Schema with sanitized attribute names and vertex names |
Source code in graflo/hq/sanitizer.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | |