Skip to content

graflo.caster

Data casting and ingestion system for graph databases.

This module provides functionality for casting and ingesting data into graph databases. It handles batch processing, file discovery, and database operations for both ArangoDB and Neo4j.

Key Components
  • Caster: Main class for data casting and ingestion
  • FilePattern: Pattern matching for file discovery
  • Patterns: Collection of file patterns for different resources
Example

caster = Caster(schema=schema) caster.ingest(path="data/", conn_conf=db_config)

Caster

Main class for data casting and ingestion.

This class handles the process of casting data into graph structures and ingesting them into the database. It supports batch processing, parallel execution, and various data formats.

Attributes:

Name Type Description
schema

Schema configuration for the graph

ingestion_params

IngestionParams instance controlling ingestion behavior

Source code in graflo/caster.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
class Caster:
    """Main class for data casting and ingestion.

    This class handles the process of casting data into graph structures and
    ingesting them into the database. It supports batch processing, parallel
    execution, and various data formats.

    Attributes:
        schema: Schema configuration for the graph
        ingestion_params: IngestionParams instance controlling ingestion behavior
    """

    def __init__(
        self,
        schema: Schema,
        ingestion_params: IngestionParams | None = None,
        **kwargs,
    ):
        """Initialize the caster with schema and configuration.

        Args:
            schema: Schema configuration for the graph
            ingestion_params: IngestionParams instance with ingestion configuration.
                If None, creates IngestionParams from kwargs or uses defaults
            **kwargs: Additional configuration options (for backward compatibility):
                - clean_start: Whether to clean the database before ingestion
                - n_cores: Number of CPU cores/threads to use for parallel processing
                - max_items: Maximum number of items to process
                - batch_size: Size of batches for processing
                - dry: Whether to perform a dry run
        """
        if ingestion_params is None:
            # Create IngestionParams from kwargs or use defaults
            ingestion_params = IngestionParams(**kwargs)
        self.ingestion_params = ingestion_params
        self.schema = schema

    @staticmethod
    def discover_files(
        fpath: Path | str, pattern: FilePattern, limit_files=None
    ) -> list[Path]:
        """Discover files matching a pattern in a directory.

        Args:
            fpath: Path to search in (should be the directory containing files)
            pattern: Pattern to match files against
            limit_files: Optional limit on number of files to return

        Returns:
            list[Path]: List of matching file paths

        Raises:
            AssertionError: If pattern.sub_path is None
        """
        assert pattern.sub_path is not None
        if isinstance(fpath, str):
            fpath_pathlib = Path(fpath)
        else:
            fpath_pathlib = fpath

        # fpath is already the directory to search (pattern.sub_path from caller)
        # so we use it directly, not combined with pattern.sub_path again
        files = [
            f
            for f in fpath_pathlib.iterdir()
            if f.is_file()
            and (
                True
                if pattern.regex is None
                else re.search(pattern.regex, f.name) is not None
            )
        ]

        if limit_files is not None:
            files = files[:limit_files]

        return files

    def cast_normal_resource(
        self, data, resource_name: str | None = None
    ) -> GraphContainer:
        """Cast data into a graph container using a resource.

        Args:
            data: Data to cast
            resource_name: Optional name of the resource to use

        Returns:
            GraphContainer: Container with cast graph data
        """
        rr = self.schema.fetch_resource(resource_name)

        with ThreadPoolExecutor(max_workers=self.ingestion_params.n_cores) as executor:
            docs = list(
                executor.map(
                    lambda doc: rr(doc),
                    data,
                )
            )

        graph = GraphContainer.from_docs_list(docs)
        return graph

    def process_batch(
        self,
        batch,
        resource_name: str | None,
        conn_conf: None | DBConfig = None,
    ):
        """Process a batch of data.

        Args:
            batch: Batch of data to process
            resource_name: Optional name of the resource to use
            conn_conf: Optional database connection configuration
        """
        gc = self.cast_normal_resource(batch, resource_name=resource_name)

        if conn_conf is not None:
            self.push_db(gc=gc, conn_conf=conn_conf, resource_name=resource_name)

    def process_data_source(
        self,
        data_source: AbstractDataSource,
        resource_name: str | None = None,
        conn_conf: None | DBConfig = None,
    ):
        """Process a data source.

        Args:
            data_source: Data source to process
            resource_name: Optional name of the resource (overrides data_source.resource_name)
            conn_conf: Optional database connection configuration
        """
        # Use provided resource_name or fall back to data_source's resource_name
        actual_resource_name = resource_name or data_source.resource_name

        # Use pattern-specific limit if available, otherwise use global max_items
        limit = getattr(data_source, "_pattern_limit", None)
        if limit is None:
            limit = self.ingestion_params.max_items

        for batch in data_source.iter_batches(
            batch_size=self.ingestion_params.batch_size, limit=limit
        ):
            self.process_batch(
                batch, resource_name=actual_resource_name, conn_conf=conn_conf
            )

    def process_resource(
        self,
        resource_instance: (
            Path | str | list[dict] | list[list] | pd.DataFrame | dict[str, Any]
        ),
        resource_name: str | None,
        conn_conf: None | DBConfig = None,
        **kwargs,
    ):
        """Process a resource instance from configuration or direct data.

        This method accepts either:
        1. A configuration dictionary with 'source_type' and data source parameters
        2. A file path (Path or str) - creates FileDataSource
        3. In-memory data (list[dict], list[list], or pd.DataFrame) - creates InMemoryDataSource

        Args:
            resource_instance: Configuration dict, file path, or in-memory data.
                Configuration dict format:
                - {"source_type": "file", "path": "data.json"}
                - {"source_type": "api", "config": {"url": "https://..."}}
                - {"source_type": "sql", "config": {"connection_string": "...", "query": "..."}}
                - {"source_type": "in_memory", "data": [...]}
            resource_name: Optional name of the resource
            conn_conf: Optional database connection configuration
            **kwargs: Additional arguments passed to data source creation
                (e.g., columns for list[list], encoding for files)
        """
        # Handle configuration dictionary
        if isinstance(resource_instance, dict):
            config = resource_instance.copy()
            # Merge with kwargs (kwargs take precedence)
            config.update(kwargs)
            data_source = DataSourceFactory.create_data_source_from_config(config)
        # Handle file paths
        elif isinstance(resource_instance, (Path, str)):
            # File path - create FileDataSource
            # Extract only valid file data source parameters with proper typing
            file_type: str | ChunkerType | None = cast(
                str | ChunkerType | None, kwargs.get("file_type", None)
            )
            encoding: EncodingType = cast(
                EncodingType, kwargs.get("encoding", EncodingType.UTF_8)
            )
            sep: str | None = cast(str | None, kwargs.get("sep", None))
            data_source = DataSourceFactory.create_file_data_source(
                path=resource_instance,
                file_type=file_type,
                encoding=encoding,
                sep=sep,
            )
        # Handle in-memory data
        else:
            # In-memory data - create InMemoryDataSource
            # Extract only valid in-memory data source parameters with proper typing
            columns: list[str] | None = cast(
                list[str] | None, kwargs.get("columns", None)
            )
            data_source = DataSourceFactory.create_in_memory_data_source(
                data=resource_instance,
                columns=columns,
            )

        data_source.resource_name = resource_name

        # Process using the data source
        self.process_data_source(
            data_source=data_source,
            resource_name=resource_name,
            conn_conf=conn_conf,
        )

    def push_db(
        self,
        gc: GraphContainer,
        conn_conf: DBConfig,
        resource_name: str | None,
    ):
        """Push graph container data to the database.

        Args:
            gc: Graph container with data to push
            conn_conf: Database connection configuration
            resource_name: Optional name of the resource
        """
        vc = self.schema.vertex_config
        resource = self.schema.fetch_resource(resource_name)
        with ConnectionManager(connection_config=conn_conf) as db_client:
            for vcol, data in gc.vertices.items():
                # blank nodes: push and get back their keys  {"_key": ...}
                if vcol in vc.blank_vertices:
                    query0 = db_client.insert_return_batch(data, vc.vertex_dbname(vcol))
                    cursor = db_client.execute(query0)
                    gc.vertices[vcol] = [item for item in cursor]
                else:
                    db_client.upsert_docs_batch(
                        data,
                        vc.vertex_dbname(vcol),
                        vc.index(vcol),
                        update_keys="doc",
                        filter_uniques=True,
                        dry=self.ingestion_params.dry,
                    )

            # update edge misc with blank node edges
            for vcol in vc.blank_vertices:
                for edge_id, edge in self.schema.edge_config.edges_items():
                    vfrom, vto, relation = edge_id
                    if vcol == vfrom or vcol == vto:
                        if edge_id not in gc.edges:
                            gc.edges[edge_id] = []
                        gc.edges[edge_id].extend(
                            [
                                (x, y, {})
                                for x, y in zip(gc.vertices[vfrom], gc.vertices[vto])
                            ]
                        )

        with ConnectionManager(connection_config=conn_conf) as db_client:
            # currently works only on item level
            for edge in resource.extra_weights:
                if edge.weights is None:
                    continue
                for weight in edge.weights.vertices:
                    if weight.name in vc.vertex_set:
                        index_fields = vc.index(weight.name)

                        if not self.ingestion_params.dry and weight.name in gc.vertices:
                            weights_per_item = db_client.fetch_present_documents(
                                class_name=vc.vertex_dbname(weight.name),
                                batch=gc.vertices[weight.name],
                                match_keys=index_fields.fields,
                                keep_keys=weight.fields,
                            )

                            for j, item in enumerate(gc.linear):
                                weights = weights_per_item[j]

                                for ee in item[edge.edge_id]:
                                    weight_collection_attached = {
                                        weight.cfield(k): v
                                        for k, v in weights[0].items()
                                    }
                                    ee.update(weight_collection_attached)
                    else:
                        logger.error(f"{weight.name} not a valid vertex")

        with ConnectionManager(connection_config=conn_conf) as db_client:
            for edge_id, edge in self.schema.edge_config.edges_items():
                for ee in gc.loop_over_relations(edge_id):
                    _, _, relation = ee
                    if not self.ingestion_params.dry:
                        data = gc.edges[ee]
                        db_client.insert_edges_batch(
                            docs_edges=data,
                            source_class=vc.vertex_dbname(edge.source),
                            target_class=vc.vertex_dbname(edge.target),
                            relation_name=relation,
                            collection_name=edge.database_name,
                            match_keys_source=vc.index(edge.source).fields,
                            match_keys_target=vc.index(edge.target).fields,
                            filter_uniques=False,
                            dry=self.ingestion_params.dry,
                        )

    def process_with_queue(self, tasks: mp.Queue, conn_conf: DBConfig | None = None):
        """Process tasks from a queue.

        Args:
            tasks: Queue of tasks to process
            conn_conf: Optional database connection configuration
        """
        while True:
            try:
                task = tasks.get_nowait()
                # Support both (Path, str) tuples and DataSource instances
                if isinstance(task, tuple) and len(task) == 2:
                    filepath, resource_name = task
                    self.process_resource(
                        resource_instance=filepath,
                        resource_name=resource_name,
                        conn_conf=conn_conf,
                    )
                elif isinstance(task, AbstractDataSource):
                    self.process_data_source(data_source=task, conn_conf=conn_conf)
            except queue.Empty:
                break

    @staticmethod
    def normalize_resource(
        data: pd.DataFrame | list[list] | list[dict], columns: list[str] | None = None
    ) -> list[dict]:
        """Normalize resource data into a list of dictionaries.

        Args:
            data: Data to normalize (DataFrame, list of lists, or list of dicts)
            columns: Optional column names for list data

        Returns:
            list[dict]: Normalized data as list of dictionaries

        Raises:
            ValueError: If columns is not provided for list data
        """
        if isinstance(data, pd.DataFrame):
            columns = data.columns.tolist()
            _data = data.values.tolist()
        elif data and isinstance(data[0], list):
            _data = cast(list[list], data)  # Tell mypy this is list[list]
            if columns is None:
                raise ValueError("columns should be set")
        else:
            return cast(list[dict], data)  # Tell mypy this is list[dict]
        rows_dressed = [{k: v for k, v in zip(columns, item)} for item in _data]
        return rows_dressed

    def ingest_data_sources(
        self,
        data_source_registry: DataSourceRegistry,
        conn_conf: DBConfig,
        ingestion_params: IngestionParams | None = None,
    ):
        """Ingest data from data sources in a registry.

        Args:
            data_source_registry: Registry containing data sources mapped to resources
            conn_conf: Database connection configuration
            ingestion_params: IngestionParams instance with ingestion configuration.
                If None, uses default IngestionParams()
        """
        if ingestion_params is None:
            ingestion_params = IngestionParams()

        # Update ingestion params (may override defaults set in __init__)
        self.ingestion_params = ingestion_params
        init_only = ingestion_params.init_only

        # If effective_schema is not set, use schema.general.name as fallback
        if conn_conf.can_be_target() and conn_conf.effective_schema is None:
            schema_name = self.schema.general.name
            # Map to the appropriate field based on DB type
            if conn_conf.connection_type == DBType.TIGERGRAPH:
                # TigerGraph uses 'schema_name' field
                conn_conf.schema_name = schema_name
            else:
                # ArangoDB, Neo4j use 'database' field (which maps to effective_schema)
                conn_conf.database = schema_name

        # init_db() now handles database/schema creation automatically
        # It checks if the database exists and creates it if needed
        # Uses schema.general.name if database is not set in config
        with ConnectionManager(connection_config=conn_conf) as db_client:
            db_client.init_db(self.schema, self.ingestion_params.clean_start)

        if init_only:
            logger.info("ingest execution bound to init")
            sys.exit(0)

        # Collect all data sources
        tasks: list[AbstractDataSource] = []
        for resource_name in self.schema._resources.keys():
            data_sources = data_source_registry.get_data_sources(resource_name)
            if data_sources:
                logger.info(
                    f"For resource name {resource_name} {len(data_sources)} data sources were found"
                )
                tasks.extend(data_sources)

        with Timer() as klepsidra:
            if self.ingestion_params.n_cores > 1:
                queue_tasks: mp.Queue = mp.Queue()
                for item in tasks:
                    queue_tasks.put(item)

                func = partial(
                    self.process_with_queue,
                    conn_conf=conn_conf,
                )
                assert mp.get_start_method() == "fork", (
                    "Requires 'forking' operating system"
                )

                processes = []

                for w in range(self.ingestion_params.n_cores):
                    p = mp.Process(target=func, args=(queue_tasks,))
                    processes.append(p)
                    p.start()
                    for p in processes:
                        p.join()
            else:
                for data_source in tasks:
                    self.process_data_source(
                        data_source=data_source, conn_conf=conn_conf
                    )
        logger.info(f"Processing took {klepsidra.elapsed:.1f} sec")

    @staticmethod
    def _get_db_flavor_from_config(output_config: DBConfig) -> DBFlavor:
        """Convert DBConfig connection type to DBFlavor.

        Args:
            output_config: Database configuration

        Returns:
            DBFlavor enum value corresponding to the database type
        """
        db_type = output_config.connection_type
        if db_type == DBType.ARANGO:
            return DBFlavor.ARANGO
        elif db_type == DBType.NEO4J:
            return DBFlavor.NEO4J
        elif db_type == DBType.TIGERGRAPH:
            return DBFlavor.TIGERGRAPH
        else:
            # Default to ARANGO for unknown types
            return DBFlavor.ARANGO

    def _register_file_sources(
        self,
        registry: DataSourceRegistry,
        resource_name: str,
        pattern: FilePattern,
        ingestion_params: IngestionParams,
    ) -> None:
        """Register file data sources for a resource.

        Args:
            registry: Data source registry to add sources to
            resource_name: Name of the resource
            pattern: File pattern configuration
            ingestion_params: Ingestion parameters
        """
        if pattern.sub_path is None:
            logger.warning(
                f"FilePattern for resource '{resource_name}' has no sub_path, skipping"
            )
            return

        path_obj = pattern.sub_path.expanduser()
        files = Caster.discover_files(
            path_obj, limit_files=ingestion_params.limit_files, pattern=pattern
        )
        logger.info(f"For resource name {resource_name} {len(files)} files were found")

        for file_path in files:
            file_source = DataSourceFactory.create_file_data_source(path=file_path)
            registry.register(file_source, resource_name=resource_name)

    def _register_sql_table_sources(
        self,
        registry: DataSourceRegistry,
        resource_name: str,
        pattern: TablePattern,
        patterns: "Patterns",
        ingestion_params: IngestionParams,
    ) -> None:
        """Register SQL table data sources for a resource.

        Uses SQLDataSource with batch processing (cursors) instead of loading
        all data into memory. This is efficient for large tables.

        Args:
            registry: Data source registry to add sources to
            resource_name: Name of the resource
            pattern: Table pattern configuration
            patterns: Patterns instance for accessing configs
            ingestion_params: Ingestion parameters
        """
        postgres_config = patterns.get_postgres_config(resource_name)
        if postgres_config is None:
            logger.warning(
                f"PostgreSQL table '{resource_name}' has no connection config, skipping"
            )
            return

        table_info = patterns.get_table_info(resource_name)
        if table_info is None:
            logger.warning(
                f"Could not get table info for resource '{resource_name}', skipping"
            )
            return

        table_name, schema_name = table_info
        effective_schema = schema_name or postgres_config.schema_name or "public"

        try:
            # Build base query
            query = f'SELECT * FROM "{effective_schema}"."{table_name}"'
            where_clause = pattern.build_where_clause()
            if where_clause:
                query += f" WHERE {where_clause}"

            # Get SQLAlchemy connection string from PostgresConfig
            connection_string = postgres_config.to_sqlalchemy_connection_string()

            # Create SQLDataSource with pagination for efficient batch processing
            # Note: max_items limit is handled by SQLDataSource.iter_batches() limit parameter
            sql_config = SQLConfig(
                connection_string=connection_string,
                query=query,
                pagination=True,
                page_size=ingestion_params.batch_size,  # Use batch_size for page size
            )
            sql_source = SQLDataSource(config=sql_config)

            # Register the SQL data source (it will be processed in batches)
            registry.register(sql_source, resource_name=resource_name)

            logger.info(
                f"Created SQL data source for table '{effective_schema}.{table_name}' "
                f"mapped to resource '{resource_name}' (will process in batches of {ingestion_params.batch_size})"
            )
        except Exception as e:
            logger.error(
                f"Failed to create data source for PostgreSQL table '{resource_name}': {e}",
                exc_info=True,
            )

    def _build_registry_from_patterns(
        self,
        patterns: "Patterns",
        ingestion_params: IngestionParams,
    ) -> DataSourceRegistry:
        """Build data source registry from patterns.

        Args:
            patterns: Patterns instance mapping resources to data sources
            ingestion_params: Ingestion parameters

        Returns:
            DataSourceRegistry with registered data sources
        """
        registry = DataSourceRegistry()

        for resource in self.schema.resources:
            resource_name = resource.name
            resource_type = patterns.get_resource_type(resource_name)

            if resource_type is None:
                logger.warning(
                    f"No resource type found for resource '{resource_name}', skipping"
                )
                continue

            pattern = patterns.patterns.get(resource_name)
            if pattern is None:
                logger.warning(
                    f"No pattern found for resource '{resource_name}', skipping"
                )
                continue

            if resource_type == ResourceType.FILE:
                if not isinstance(pattern, FilePattern):
                    logger.warning(
                        f"Pattern for resource '{resource_name}' is not a FilePattern, skipping"
                    )
                    continue
                self._register_file_sources(
                    registry, resource_name, pattern, ingestion_params
                )

            elif resource_type == ResourceType.SQL_TABLE:
                if not isinstance(pattern, TablePattern):
                    logger.warning(
                        f"Pattern for resource '{resource_name}' is not a TablePattern, skipping"
                    )
                    continue
                self._register_sql_table_sources(
                    registry, resource_name, pattern, patterns, ingestion_params
                )

            else:
                logger.warning(
                    f"Unsupported resource type '{resource_type}' for resource '{resource_name}', skipping"
                )

        return registry

    def ingest(
        self,
        output_config: DBConfig,
        patterns: "Patterns | None" = None,
        ingestion_params: IngestionParams | None = None,
    ):
        """Ingest data into the graph database.

        This is the main ingestion method that takes:
        - Schema: Graph structure (already set in Caster)
        - OutputConfig: Target graph database configuration
        - Patterns: Mapping of resources to physical data sources
        - IngestionParams: Parameters controlling the ingestion process

        Args:
            output_config: Target database connection configuration (for writing graph)
            patterns: Patterns instance mapping resources to data sources
                If None, defaults to empty Patterns()
            ingestion_params: IngestionParams instance with ingestion configuration.
                If None, uses default IngestionParams()
        """
        # Normalize parameters
        patterns = patterns or Patterns()
        ingestion_params = ingestion_params or IngestionParams()

        # Initialize vertex config with correct field types based on database type
        db_flavor = self._get_db_flavor_from_config(output_config)
        self.schema.vertex_config.finish_init(db_flavor)
        # Initialize edge config after vertex config is fully initialized
        self.schema.edge_config.finish_init(self.schema.vertex_config)

        # Build registry from patterns
        registry = self._build_registry_from_patterns(patterns, ingestion_params)

        # Ingest data sources
        self.ingest_data_sources(
            data_source_registry=registry,
            conn_conf=output_config,
            ingestion_params=ingestion_params,
        )

__init__(schema, ingestion_params=None, **kwargs)

Initialize the caster with schema and configuration.

Parameters:

Name Type Description Default
schema Schema

Schema configuration for the graph

required
ingestion_params IngestionParams | None

IngestionParams instance with ingestion configuration. If None, creates IngestionParams from kwargs or uses defaults

None
**kwargs

Additional configuration options (for backward compatibility): - clean_start: Whether to clean the database before ingestion - n_cores: Number of CPU cores/threads to use for parallel processing - max_items: Maximum number of items to process - batch_size: Size of batches for processing - dry: Whether to perform a dry run

{}
Source code in graflo/caster.py
def __init__(
    self,
    schema: Schema,
    ingestion_params: IngestionParams | None = None,
    **kwargs,
):
    """Initialize the caster with schema and configuration.

    Args:
        schema: Schema configuration for the graph
        ingestion_params: IngestionParams instance with ingestion configuration.
            If None, creates IngestionParams from kwargs or uses defaults
        **kwargs: Additional configuration options (for backward compatibility):
            - clean_start: Whether to clean the database before ingestion
            - n_cores: Number of CPU cores/threads to use for parallel processing
            - max_items: Maximum number of items to process
            - batch_size: Size of batches for processing
            - dry: Whether to perform a dry run
    """
    if ingestion_params is None:
        # Create IngestionParams from kwargs or use defaults
        ingestion_params = IngestionParams(**kwargs)
    self.ingestion_params = ingestion_params
    self.schema = schema

cast_normal_resource(data, resource_name=None)

Cast data into a graph container using a resource.

Parameters:

Name Type Description Default
data

Data to cast

required
resource_name str | None

Optional name of the resource to use

None

Returns:

Name Type Description
GraphContainer GraphContainer

Container with cast graph data

Source code in graflo/caster.py
def cast_normal_resource(
    self, data, resource_name: str | None = None
) -> GraphContainer:
    """Cast data into a graph container using a resource.

    Args:
        data: Data to cast
        resource_name: Optional name of the resource to use

    Returns:
        GraphContainer: Container with cast graph data
    """
    rr = self.schema.fetch_resource(resource_name)

    with ThreadPoolExecutor(max_workers=self.ingestion_params.n_cores) as executor:
        docs = list(
            executor.map(
                lambda doc: rr(doc),
                data,
            )
        )

    graph = GraphContainer.from_docs_list(docs)
    return graph

discover_files(fpath, pattern, limit_files=None) staticmethod

Discover files matching a pattern in a directory.

Parameters:

Name Type Description Default
fpath Path | str

Path to search in (should be the directory containing files)

required
pattern FilePattern

Pattern to match files against

required
limit_files

Optional limit on number of files to return

None

Returns:

Type Description
list[Path]

list[Path]: List of matching file paths

Raises:

Type Description
AssertionError

If pattern.sub_path is None

Source code in graflo/caster.py
@staticmethod
def discover_files(
    fpath: Path | str, pattern: FilePattern, limit_files=None
) -> list[Path]:
    """Discover files matching a pattern in a directory.

    Args:
        fpath: Path to search in (should be the directory containing files)
        pattern: Pattern to match files against
        limit_files: Optional limit on number of files to return

    Returns:
        list[Path]: List of matching file paths

    Raises:
        AssertionError: If pattern.sub_path is None
    """
    assert pattern.sub_path is not None
    if isinstance(fpath, str):
        fpath_pathlib = Path(fpath)
    else:
        fpath_pathlib = fpath

    # fpath is already the directory to search (pattern.sub_path from caller)
    # so we use it directly, not combined with pattern.sub_path again
    files = [
        f
        for f in fpath_pathlib.iterdir()
        if f.is_file()
        and (
            True
            if pattern.regex is None
            else re.search(pattern.regex, f.name) is not None
        )
    ]

    if limit_files is not None:
        files = files[:limit_files]

    return files

ingest(output_config, patterns=None, ingestion_params=None)

Ingest data into the graph database.

This is the main ingestion method that takes: - Schema: Graph structure (already set in Caster) - OutputConfig: Target graph database configuration - Patterns: Mapping of resources to physical data sources - IngestionParams: Parameters controlling the ingestion process

Parameters:

Name Type Description Default
output_config DBConfig

Target database connection configuration (for writing graph)

required
patterns Patterns | None

Patterns instance mapping resources to data sources If None, defaults to empty Patterns()

None
ingestion_params IngestionParams | None

IngestionParams instance with ingestion configuration. If None, uses default IngestionParams()

None
Source code in graflo/caster.py
def ingest(
    self,
    output_config: DBConfig,
    patterns: "Patterns | None" = None,
    ingestion_params: IngestionParams | None = None,
):
    """Ingest data into the graph database.

    This is the main ingestion method that takes:
    - Schema: Graph structure (already set in Caster)
    - OutputConfig: Target graph database configuration
    - Patterns: Mapping of resources to physical data sources
    - IngestionParams: Parameters controlling the ingestion process

    Args:
        output_config: Target database connection configuration (for writing graph)
        patterns: Patterns instance mapping resources to data sources
            If None, defaults to empty Patterns()
        ingestion_params: IngestionParams instance with ingestion configuration.
            If None, uses default IngestionParams()
    """
    # Normalize parameters
    patterns = patterns or Patterns()
    ingestion_params = ingestion_params or IngestionParams()

    # Initialize vertex config with correct field types based on database type
    db_flavor = self._get_db_flavor_from_config(output_config)
    self.schema.vertex_config.finish_init(db_flavor)
    # Initialize edge config after vertex config is fully initialized
    self.schema.edge_config.finish_init(self.schema.vertex_config)

    # Build registry from patterns
    registry = self._build_registry_from_patterns(patterns, ingestion_params)

    # Ingest data sources
    self.ingest_data_sources(
        data_source_registry=registry,
        conn_conf=output_config,
        ingestion_params=ingestion_params,
    )

ingest_data_sources(data_source_registry, conn_conf, ingestion_params=None)

Ingest data from data sources in a registry.

Parameters:

Name Type Description Default
data_source_registry DataSourceRegistry

Registry containing data sources mapped to resources

required
conn_conf DBConfig

Database connection configuration

required
ingestion_params IngestionParams | None

IngestionParams instance with ingestion configuration. If None, uses default IngestionParams()

None
Source code in graflo/caster.py
def ingest_data_sources(
    self,
    data_source_registry: DataSourceRegistry,
    conn_conf: DBConfig,
    ingestion_params: IngestionParams | None = None,
):
    """Ingest data from data sources in a registry.

    Args:
        data_source_registry: Registry containing data sources mapped to resources
        conn_conf: Database connection configuration
        ingestion_params: IngestionParams instance with ingestion configuration.
            If None, uses default IngestionParams()
    """
    if ingestion_params is None:
        ingestion_params = IngestionParams()

    # Update ingestion params (may override defaults set in __init__)
    self.ingestion_params = ingestion_params
    init_only = ingestion_params.init_only

    # If effective_schema is not set, use schema.general.name as fallback
    if conn_conf.can_be_target() and conn_conf.effective_schema is None:
        schema_name = self.schema.general.name
        # Map to the appropriate field based on DB type
        if conn_conf.connection_type == DBType.TIGERGRAPH:
            # TigerGraph uses 'schema_name' field
            conn_conf.schema_name = schema_name
        else:
            # ArangoDB, Neo4j use 'database' field (which maps to effective_schema)
            conn_conf.database = schema_name

    # init_db() now handles database/schema creation automatically
    # It checks if the database exists and creates it if needed
    # Uses schema.general.name if database is not set in config
    with ConnectionManager(connection_config=conn_conf) as db_client:
        db_client.init_db(self.schema, self.ingestion_params.clean_start)

    if init_only:
        logger.info("ingest execution bound to init")
        sys.exit(0)

    # Collect all data sources
    tasks: list[AbstractDataSource] = []
    for resource_name in self.schema._resources.keys():
        data_sources = data_source_registry.get_data_sources(resource_name)
        if data_sources:
            logger.info(
                f"For resource name {resource_name} {len(data_sources)} data sources were found"
            )
            tasks.extend(data_sources)

    with Timer() as klepsidra:
        if self.ingestion_params.n_cores > 1:
            queue_tasks: mp.Queue = mp.Queue()
            for item in tasks:
                queue_tasks.put(item)

            func = partial(
                self.process_with_queue,
                conn_conf=conn_conf,
            )
            assert mp.get_start_method() == "fork", (
                "Requires 'forking' operating system"
            )

            processes = []

            for w in range(self.ingestion_params.n_cores):
                p = mp.Process(target=func, args=(queue_tasks,))
                processes.append(p)
                p.start()
                for p in processes:
                    p.join()
        else:
            for data_source in tasks:
                self.process_data_source(
                    data_source=data_source, conn_conf=conn_conf
                )
    logger.info(f"Processing took {klepsidra.elapsed:.1f} sec")

normalize_resource(data, columns=None) staticmethod

Normalize resource data into a list of dictionaries.

Parameters:

Name Type Description Default
data DataFrame | list[list] | list[dict]

Data to normalize (DataFrame, list of lists, or list of dicts)

required
columns list[str] | None

Optional column names for list data

None

Returns:

Type Description
list[dict]

list[dict]: Normalized data as list of dictionaries

Raises:

Type Description
ValueError

If columns is not provided for list data

Source code in graflo/caster.py
@staticmethod
def normalize_resource(
    data: pd.DataFrame | list[list] | list[dict], columns: list[str] | None = None
) -> list[dict]:
    """Normalize resource data into a list of dictionaries.

    Args:
        data: Data to normalize (DataFrame, list of lists, or list of dicts)
        columns: Optional column names for list data

    Returns:
        list[dict]: Normalized data as list of dictionaries

    Raises:
        ValueError: If columns is not provided for list data
    """
    if isinstance(data, pd.DataFrame):
        columns = data.columns.tolist()
        _data = data.values.tolist()
    elif data and isinstance(data[0], list):
        _data = cast(list[list], data)  # Tell mypy this is list[list]
        if columns is None:
            raise ValueError("columns should be set")
    else:
        return cast(list[dict], data)  # Tell mypy this is list[dict]
    rows_dressed = [{k: v for k, v in zip(columns, item)} for item in _data]
    return rows_dressed

process_batch(batch, resource_name, conn_conf=None)

Process a batch of data.

Parameters:

Name Type Description Default
batch

Batch of data to process

required
resource_name str | None

Optional name of the resource to use

required
conn_conf None | DBConfig

Optional database connection configuration

None
Source code in graflo/caster.py
def process_batch(
    self,
    batch,
    resource_name: str | None,
    conn_conf: None | DBConfig = None,
):
    """Process a batch of data.

    Args:
        batch: Batch of data to process
        resource_name: Optional name of the resource to use
        conn_conf: Optional database connection configuration
    """
    gc = self.cast_normal_resource(batch, resource_name=resource_name)

    if conn_conf is not None:
        self.push_db(gc=gc, conn_conf=conn_conf, resource_name=resource_name)

process_data_source(data_source, resource_name=None, conn_conf=None)

Process a data source.

Parameters:

Name Type Description Default
data_source AbstractDataSource

Data source to process

required
resource_name str | None

Optional name of the resource (overrides data_source.resource_name)

None
conn_conf None | DBConfig

Optional database connection configuration

None
Source code in graflo/caster.py
def process_data_source(
    self,
    data_source: AbstractDataSource,
    resource_name: str | None = None,
    conn_conf: None | DBConfig = None,
):
    """Process a data source.

    Args:
        data_source: Data source to process
        resource_name: Optional name of the resource (overrides data_source.resource_name)
        conn_conf: Optional database connection configuration
    """
    # Use provided resource_name or fall back to data_source's resource_name
    actual_resource_name = resource_name or data_source.resource_name

    # Use pattern-specific limit if available, otherwise use global max_items
    limit = getattr(data_source, "_pattern_limit", None)
    if limit is None:
        limit = self.ingestion_params.max_items

    for batch in data_source.iter_batches(
        batch_size=self.ingestion_params.batch_size, limit=limit
    ):
        self.process_batch(
            batch, resource_name=actual_resource_name, conn_conf=conn_conf
        )

process_resource(resource_instance, resource_name, conn_conf=None, **kwargs)

Process a resource instance from configuration or direct data.

This method accepts either: 1. A configuration dictionary with 'source_type' and data source parameters 2. A file path (Path or str) - creates FileDataSource 3. In-memory data (list[dict], list[list], or pd.DataFrame) - creates InMemoryDataSource

Parameters:

Name Type Description Default
resource_instance Path | str | list[dict] | list[list] | DataFrame | dict[str, Any]

Configuration dict, file path, or in-memory data. Configuration dict format: - {"source_type": "file", "path": "data.json"} - {"source_type": "api", "config": {"url": "https://..."}} - {"source_type": "sql", "config": {"connection_string": "...", "query": "..."}} - {"source_type": "in_memory", "data": [...]}

required
resource_name str | None

Optional name of the resource

required
conn_conf None | DBConfig

Optional database connection configuration

None
**kwargs

Additional arguments passed to data source creation (e.g., columns for list[list], encoding for files)

{}
Source code in graflo/caster.py
def process_resource(
    self,
    resource_instance: (
        Path | str | list[dict] | list[list] | pd.DataFrame | dict[str, Any]
    ),
    resource_name: str | None,
    conn_conf: None | DBConfig = None,
    **kwargs,
):
    """Process a resource instance from configuration or direct data.

    This method accepts either:
    1. A configuration dictionary with 'source_type' and data source parameters
    2. A file path (Path or str) - creates FileDataSource
    3. In-memory data (list[dict], list[list], or pd.DataFrame) - creates InMemoryDataSource

    Args:
        resource_instance: Configuration dict, file path, or in-memory data.
            Configuration dict format:
            - {"source_type": "file", "path": "data.json"}
            - {"source_type": "api", "config": {"url": "https://..."}}
            - {"source_type": "sql", "config": {"connection_string": "...", "query": "..."}}
            - {"source_type": "in_memory", "data": [...]}
        resource_name: Optional name of the resource
        conn_conf: Optional database connection configuration
        **kwargs: Additional arguments passed to data source creation
            (e.g., columns for list[list], encoding for files)
    """
    # Handle configuration dictionary
    if isinstance(resource_instance, dict):
        config = resource_instance.copy()
        # Merge with kwargs (kwargs take precedence)
        config.update(kwargs)
        data_source = DataSourceFactory.create_data_source_from_config(config)
    # Handle file paths
    elif isinstance(resource_instance, (Path, str)):
        # File path - create FileDataSource
        # Extract only valid file data source parameters with proper typing
        file_type: str | ChunkerType | None = cast(
            str | ChunkerType | None, kwargs.get("file_type", None)
        )
        encoding: EncodingType = cast(
            EncodingType, kwargs.get("encoding", EncodingType.UTF_8)
        )
        sep: str | None = cast(str | None, kwargs.get("sep", None))
        data_source = DataSourceFactory.create_file_data_source(
            path=resource_instance,
            file_type=file_type,
            encoding=encoding,
            sep=sep,
        )
    # Handle in-memory data
    else:
        # In-memory data - create InMemoryDataSource
        # Extract only valid in-memory data source parameters with proper typing
        columns: list[str] | None = cast(
            list[str] | None, kwargs.get("columns", None)
        )
        data_source = DataSourceFactory.create_in_memory_data_source(
            data=resource_instance,
            columns=columns,
        )

    data_source.resource_name = resource_name

    # Process using the data source
    self.process_data_source(
        data_source=data_source,
        resource_name=resource_name,
        conn_conf=conn_conf,
    )

process_with_queue(tasks, conn_conf=None)

Process tasks from a queue.

Parameters:

Name Type Description Default
tasks Queue

Queue of tasks to process

required
conn_conf DBConfig | None

Optional database connection configuration

None
Source code in graflo/caster.py
def process_with_queue(self, tasks: mp.Queue, conn_conf: DBConfig | None = None):
    """Process tasks from a queue.

    Args:
        tasks: Queue of tasks to process
        conn_conf: Optional database connection configuration
    """
    while True:
        try:
            task = tasks.get_nowait()
            # Support both (Path, str) tuples and DataSource instances
            if isinstance(task, tuple) and len(task) == 2:
                filepath, resource_name = task
                self.process_resource(
                    resource_instance=filepath,
                    resource_name=resource_name,
                    conn_conf=conn_conf,
                )
            elif isinstance(task, AbstractDataSource):
                self.process_data_source(data_source=task, conn_conf=conn_conf)
        except queue.Empty:
            break

push_db(gc, conn_conf, resource_name)

Push graph container data to the database.

Parameters:

Name Type Description Default
gc GraphContainer

Graph container with data to push

required
conn_conf DBConfig

Database connection configuration

required
resource_name str | None

Optional name of the resource

required
Source code in graflo/caster.py
def push_db(
    self,
    gc: GraphContainer,
    conn_conf: DBConfig,
    resource_name: str | None,
):
    """Push graph container data to the database.

    Args:
        gc: Graph container with data to push
        conn_conf: Database connection configuration
        resource_name: Optional name of the resource
    """
    vc = self.schema.vertex_config
    resource = self.schema.fetch_resource(resource_name)
    with ConnectionManager(connection_config=conn_conf) as db_client:
        for vcol, data in gc.vertices.items():
            # blank nodes: push and get back their keys  {"_key": ...}
            if vcol in vc.blank_vertices:
                query0 = db_client.insert_return_batch(data, vc.vertex_dbname(vcol))
                cursor = db_client.execute(query0)
                gc.vertices[vcol] = [item for item in cursor]
            else:
                db_client.upsert_docs_batch(
                    data,
                    vc.vertex_dbname(vcol),
                    vc.index(vcol),
                    update_keys="doc",
                    filter_uniques=True,
                    dry=self.ingestion_params.dry,
                )

        # update edge misc with blank node edges
        for vcol in vc.blank_vertices:
            for edge_id, edge in self.schema.edge_config.edges_items():
                vfrom, vto, relation = edge_id
                if vcol == vfrom or vcol == vto:
                    if edge_id not in gc.edges:
                        gc.edges[edge_id] = []
                    gc.edges[edge_id].extend(
                        [
                            (x, y, {})
                            for x, y in zip(gc.vertices[vfrom], gc.vertices[vto])
                        ]
                    )

    with ConnectionManager(connection_config=conn_conf) as db_client:
        # currently works only on item level
        for edge in resource.extra_weights:
            if edge.weights is None:
                continue
            for weight in edge.weights.vertices:
                if weight.name in vc.vertex_set:
                    index_fields = vc.index(weight.name)

                    if not self.ingestion_params.dry and weight.name in gc.vertices:
                        weights_per_item = db_client.fetch_present_documents(
                            class_name=vc.vertex_dbname(weight.name),
                            batch=gc.vertices[weight.name],
                            match_keys=index_fields.fields,
                            keep_keys=weight.fields,
                        )

                        for j, item in enumerate(gc.linear):
                            weights = weights_per_item[j]

                            for ee in item[edge.edge_id]:
                                weight_collection_attached = {
                                    weight.cfield(k): v
                                    for k, v in weights[0].items()
                                }
                                ee.update(weight_collection_attached)
                else:
                    logger.error(f"{weight.name} not a valid vertex")

    with ConnectionManager(connection_config=conn_conf) as db_client:
        for edge_id, edge in self.schema.edge_config.edges_items():
            for ee in gc.loop_over_relations(edge_id):
                _, _, relation = ee
                if not self.ingestion_params.dry:
                    data = gc.edges[ee]
                    db_client.insert_edges_batch(
                        docs_edges=data,
                        source_class=vc.vertex_dbname(edge.source),
                        target_class=vc.vertex_dbname(edge.target),
                        relation_name=relation,
                        collection_name=edge.database_name,
                        match_keys_source=vc.index(edge.source).fields,
                        match_keys_target=vc.index(edge.target).fields,
                        filter_uniques=False,
                        dry=self.ingestion_params.dry,
                    )

IngestionParams

Bases: BaseModel

Parameters for controlling the ingestion process.

Attributes:

Name Type Description
clean_start bool

Whether to clean the database before ingestion

n_cores int

Number of CPU cores/threads to use for parallel processing

max_items int | None

Maximum number of items to process per resource (applies to all data sources)

batch_size int

Size of batches for processing

dry bool

Whether to perform a dry run (no database changes)

init_only bool

Whether to only initialize the database without ingestion

limit_files int | None

Optional limit on number of files to process

Source code in graflo/caster.py
class IngestionParams(BaseModel):
    """Parameters for controlling the ingestion process.

    Attributes:
        clean_start: Whether to clean the database before ingestion
        n_cores: Number of CPU cores/threads to use for parallel processing
        max_items: Maximum number of items to process per resource (applies to all data sources)
        batch_size: Size of batches for processing
        dry: Whether to perform a dry run (no database changes)
        init_only: Whether to only initialize the database without ingestion
        limit_files: Optional limit on number of files to process
    """

    clean_start: bool = False
    n_cores: int = 1
    max_items: int | None = None
    batch_size: int = 10000
    dry: bool = False
    init_only: bool = False
    limit_files: int | None = None